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Programme

Introduction to the concept of deformation quantization (existence, classification and

representation results for formal star products).

Notion of formal star products with symmetries; one has a Lie group action (or a Lie

algebra action) compatible with the classical Poisson structure, and one wants to consider star

products such that the Lie group acts by automorphisms (or the Lie algebra acts by derivations).

We recall in particular the link between left invariant star products on Lie groups and Drinfeld

twists, and the notion of universal deformation formulas.

Quantum moment map : Classically, symmetries are particularly interesting when they are

implemented by a moment map and we give indications to build a corresponding quantum

version.

Quantum reduction : reduction is a construction in classical mechanics with symmetries

which allows to reduce the dimension of the manifold; we describe one of the various quantum

analogues which have been considered in the framework of formal deformation quantization.

Considerations about convergence of star products .
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The need for more

For physics, ~ is a constant of nature and ν = i~ is not a formal parameter. Formal deformation
is not enough; for instance, there is no general reasonable notion of spectra for formal star
product algebras. Spectra can be recovered only for a few examples with convergence.. In
general, formal deformation quantization can not predict the values one would obtain by
measurements.

In non formal deformation quantization of a Poisson manifold, one would like to have a
subalgebra A of complex valued smooth functions (or distributions) on the manifold, with some
topology, and a family of continuous associative law ∗λ on A, depending on a parameter ~
belonging to a set I admitting 0 in its closure, so that the limit of ∗~ when ~ 7→ 0 is the usual

product, and the limit of the
[·,·]∗~

~ is the Poisson bracket. One would also like the topology to
be such that one could define nice representations of (A, ∗λ) and spectra.

It is well known that the framework of C∗-algebras provides a nice background for a notion of
spectra (the spectrum of an element a in a unital C∗-algebra is the set of λ ∈ C such that
a− λ1 is not invertible), but this framework might be too restrictive.

Formal deformation quantization could be thought as a first step, using the constructions of

that theory to build, in a second step, a framework where spectra and expectation values could

be defined.
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Weyl quantization

The Moyal star product presents interesting features concerning convergence. Recall that the
formal Moyal star product comes from the quantization of polynomials on R2n with Weyl’s
ordering. Weyl quantization can be extended beyond polynomials; heuristically one would like

“QWeyl (F )” = (
1

2π
)2n
∫
Rn

∫
Rn

F̂ (u, v)e i(uQ+vP)dudv

where F̂ is the Fourier transform F̂ (u, v) =
∫
Rn

∫
Rn F (q, p)e−i(uq+vp)dqdp. If one develops

formally this, using the fact that on a nice test function φ, (e iuQφ)(x) = e iu.xφ(x),

(e ivPφ)(x) = φ(x + ~v) and e i(uQ+vP) = e
i
2
~u.v e iuQ ◦ e ivP , one gets the formula

(“QWeyl (F )”(φ))(x) = 1
(2π)2n

∫ ∫ ∫ ∫
(Rn)⊗4 F (q, p)e−isq−itpe i~st/2e isxφ(x + ~t)dsdtdqdp.

If t = y−x
~ , we get 1

(2π)2n~n
∫ ∫ ∫ ∫

(Rn)⊗4 F (q, p)e−isq−i(y−x)p/~e is(x+y)/2φ(y)dsdydqdp, which

is 1
(2π~)n

∫
Rn

∫
Rn F ( x+y

2
, p)e−i(y−x)p/~φ(y) dydp. Setting p = 2π~ξ, it gives

(QWeyl (F )(φ))(x) :=

∫
Rn

(∫
Rn

F (
x + y

2
, 2π~ξ)e−2πi(y−x)ξφ(y)dy

)
dξ;

which one takes as a definition of QWeyl (F ); it is well defined for a test function φ in the

Schwartz space when F satisfies weak regularity bounds (there exists a constant C > 0 and

constants Ci,j > 0 ∀i , j ≥ 0 such that for all x , p, one has |∇i
x∇i

pF (x , p)| ≤ Ci,j (1 + |x |+ |p|)C ).

The above formula coincides with the previous one when F is a polynomial.
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Moyal convergent star product

• The map QWeyl gives an isometry between the space L2(R2n) and the space of Hilbert
Schmidt operators on L2(Rn), associating a self-adjoint operator to a real function.

• If F and G are two Schwartz functions, then the composition of the corresponding operators
QWeyl (F ) ◦ QWeyl (G) is equal to QWeyl (F ∗~ G) where F ∗~ G is the function defined by

(F ∗~ G)(u) := (
1

π~
)2n
∫
R2n

∫
R2n

e
2i
~ Ω(v,w)F (u + v)G(u + w)dvdw (1)

= (
1

π~
)2n
∫
R2n

∫
R2n

e
2i
~ (Ω(u,v)+Ω(v,w)+Ω(w,u))F (v)G(w)dvdw . (2)

with Ω =
(

0 I
−I 0

)
. The result is a Schwartz function;hence ∗~ gives an associative product on

the space of Schwartz functions, called the convergent Moyal star product.

• The (formal) Moyal star product can be seen as an asymptoptic expansion in ν = i~ of this

composition law.
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Integral formulas for star products

Many examples of star products are related to integral formulas. For instance, the Berezin or
Toeplitz star product on Kähler manifolds are obtained as asymptotic expansions for ~→ 0 of
some convergent counterpart in usual quantization, given by an integral formula.

For instance, if (M, ω, J) is a compact Kähler manifold and (L,∇, h) is a regular quantization
bundle over M, the Berezin’s symbols were defined previously

Â(x) :=
<Aeq ,eq>

‖eq‖2 q ∈ L0, π(q) = x ∈ M with coherent states defined by

s(π(q)) =< s, eq > q for any s ∈ H; and the formula for the composition of Berezin’s
symbols is given by

(A ∗k B)(x) =

∫
M
Â(x , y)B̂(y , x)ψk (x , y)ε(k) k

nωn

n!
A,B ∈ Ê(Ll ), k ≥ l (3)

where ψ(x , y) =
|〈eq′ ,eq〉|

2

‖eq′‖2‖eq‖2 with π(q) = x and π(q′) = y .

The asymptotic expansion in k−1 as k →∞ is well defined; it gives a series in 1
k

which is a
differential star product on the manifold.

The difficulty to get convergent deformations in this framework of an integral formula depending

on a parameter k (given an associative law ∗k on a space Ê(Lk )) is to find an algebra, i.e. a

subspace stable by all ∗k .

Simone Gutt DQ and Symmetries 6 / 1



Integral formulas for star products

Many examples of star products are related to integral formulas. For instance, the Berezin or
Toeplitz star product on Kähler manifolds are obtained as asymptotic expansions for ~→ 0 of
some convergent counterpart in usual quantization, given by an integral formula.

For instance, if (M, ω, J) is a compact Kähler manifold and (L,∇, h) is a regular quantization
bundle over M, the Berezin’s symbols were defined previously
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The disk

Berezin’s procedure can be extended to non compact Kähler manifolds. For a possibly
unbounded operator A to have a Berezin’s symbol, the coherent states must be in the domain,
Aeq ∈ H, ∀q; do be able to write a composition formula A ◦ B in terms of symbols as above,
one needs the adjoint of A to be defined on coherent states
(so the section s(x) =< eq′ ,Aeq > q should be holomorphic and square integrable for all q′)
and one needs all Beq to be in the domain of A.

Consider the open disk,
(
D, ω = −iλdz∧dz

2π(1−|z|2)2 = d
(

iλzdz
2π(1−|z|2)

))
; then D = SU(1, 1)/U(1) and

the action of SU(1, 1) is Hamiltonian.

If (L,∇, h) is a homogenous quantization for the simply-connected group ˜SU(1, 1) then L can
be trivialised on all of D by a section s0 with |s0|2 = (1− |z|2)λ. The norm on holomorphic
sections is

‖fs0‖2 =

∫
D
|f (z)|2(1− |z|2)λ

λd2z

π(1− |z|2)2

where d2z denotes the usual Lebesgue measure; ‖s0‖2 is finite for λ > 1 which we assume.

The characteristic function is ε = 1− λ−1
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and one needs all Beq to be in the domain of A.

Consider the open disk,
(
D, ω = −iλdz∧dz

2π(1−|z|2)2 = d
(

iλzdz
2π(1−|z|2)

))
; then D = SU(1, 1)/U(1) and

the action of SU(1, 1) is Hamiltonian.

If (L,∇, h) is a homogenous quantization for the simply-connected group ˜SU(1, 1) then L can
be trivialised on all of D by a section s0 with |s0|2 = (1− |z|2)λ. The norm on holomorphic
sections is

‖fs0‖2 =

∫
D
|f (z)|2(1− |z|2)λ

λd2z

π(1− |z|2)2

where d2z denotes the usual Lebesgue measure; ‖s0‖2 is finite for λ > 1 which we assume.

The characteristic function is ε = 1− λ−1
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A class of symbols on the disk

The class of symbols which we shall use are the symbols of differential operators D(p, q, k) on
Lk defined by

D(p, q, k)(fsk0 )(z) =

{
zp
(
∂

∂z

)q

f (z)

}
sk0 (z).

We have D(p, q, k)e
(k)
s0(w)

(z) = ε(k)Pq(kλ)zp
(

w
1−wz

)q
(1− wz)−kλsk0 (z), where Pq is the

polynomial of degree q given by Pq(x) := x(x + 1) . . . (x + q − 1), and the symbol of D(p, q, k)
is given by

̂D(p, q, k)(z) = Pq(kλ) zp
(

z

1− |z|2

)q

.

It follows that zp
(

z
1−|z|2

)q
is the symbol of the densely defined operator D(p,q,k)

Pq(kλ)
on Hk . We

can clearly compose such operators since the result of applying the first to a coherent state is a

coherent state for a different parameter and these are in the domain of the second.
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The disk

So the ∗k - defined in (??) is well-defined on those functions and yields{
zp

(
z

1− |z|2

)q}
∗k
{
z r
(

z

1− |z|2

)s}
= (Pq(kλ)Ps(kλ))−1 ̂D(p, q, k) ◦ D(r , s, k)

=

min(q,r)∑
m=0

(q
m

) r !

(r −m)!

Ps+q−m(kλ)

Pq(kλ)Ps(kλ)
zp+r−m

(
z

1− |z|2

)s+q−m

.

We deduce that
{
zp
(

z
1−|z|2

)q}
∗k
{
z r
(

z
1−|z|2

)s}
is a rational function of k; hence the

asymptotic expansion is convergent on symbols of polynomial differential operators.

We have on the disk a subspace of smooth functions
{
zp
(

z
1−|z|2

)q}
, with a family of

associative products {∗k}.
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The dual of a Lie algebra

The star product on the dual g∗ of a Lie algebra g obtained via the bijection between
polynomials on g∗ and the universal enveloping algebra, has also an integral formula counterpart
for ν = 2πi , given by Drinfeld :

u ∗ v(ξ) =

∫
g×g

û(X )v̂(Y )e2iπ〈ξ,CBH(X ,Y )〉dXdY

where û(X ) =
∫
g∗ u(η)e−2iπ〈η,X〉dη and where CBH denotes Campbell-Baker-Hausdorff

formula for the product of elements in the group in a logarithmic chart

expX expY = expCBH(X ,Y ) ∀X ,Y ∈ g.

So has the star product on the cotangent bundle of a Lie group.

Whether in general the asymptotics can be used to recover the convergent quantization is a

topic of research.
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Definition of strict deformation quantization

In the framework of C∗-algebras, Rieffel introduced the notion of strict deformation
quantization: A strict deformation quantization of a dense ∗-subalgebra A′ of a C∗-algebra, in
the direction of a Poisson bracket {., .} defined on A′, is an open interval I ⊂ R containing 0,
the assignment, for each ~ ∈ I , of:

an associative product ×~,

an involution ∗~,

and a C∗-norm ‖ ‖~ (for ×~ and ∗~) on A′,
which coincide for ~ = 0 to the original product, involution and C∗-norm on A′,
such that the corresponding field of C∗-algebras, with continuity structure given by the elements
of A′ as constant fields, is a continuous field of C∗-algebras,

and such that for all a, b ∈ A′, ‖ (a×~b−ab)
i~ − {a, b}‖~ → 0 as ~→ 0.

A problem is that very few examples are known.

Simone Gutt DQ and Symmetries 11 / 1



Definition of strict deformation quantization

In the framework of C∗-algebras, Rieffel introduced the notion of strict deformation
quantization: A strict deformation quantization of a dense ∗-subalgebra A′ of a C∗-algebra, in
the direction of a Poisson bracket {., .} defined on A′, is an open interval I ⊂ R containing 0,
the assignment, for each ~ ∈ I , of:

an associative product ×~,

an involution ∗~,

and a C∗-norm ‖ ‖~ (for ×~ and ∗~) on A′,
which coincide for ~ = 0 to the original product, involution and C∗-norm on A′,
such that the corresponding field of C∗-algebras, with continuity structure given by the elements
of A′ as constant fields, is a continuous field of C∗-algebras,

and such that for all a, b ∈ A′, ‖ (a×~b−ab)
i~ − {a, b}‖~ → 0 as ~→ 0.

A problem is that very few examples are known.

Simone Gutt DQ and Symmetries 11 / 1



Definition of strict deformation quantization

In the framework of C∗-algebras, Rieffel introduced the notion of strict deformation
quantization: A strict deformation quantization of a dense ∗-subalgebra A′ of a C∗-algebra, in
the direction of a Poisson bracket {., .} defined on A′, is an open interval I ⊂ R containing 0,
the assignment, for each ~ ∈ I , of:

an associative product ×~,

an involution ∗~,

and a C∗-norm ‖ ‖~ (for ×~ and ∗~) on A′,
which coincide for ~ = 0 to the original product, involution and C∗-norm on A′,
such that the corresponding field of C∗-algebras, with continuity structure given by the elements
of A′ as constant fields, is a continuous field of C∗-algebras,

and such that for all a, b ∈ A′, ‖ (a×~b−ab)
i~ − {a, b}‖~ → 0 as ~→ 0.

A problem is that very few examples are known.

Simone Gutt DQ and Symmetries 11 / 1



Definition of strict deformation quantization

In the framework of C∗-algebras, Rieffel introduced the notion of strict deformation
quantization: A strict deformation quantization of a dense ∗-subalgebra A′ of a C∗-algebra, in
the direction of a Poisson bracket {., .} defined on A′, is an open interval I ⊂ R containing 0,
the assignment, for each ~ ∈ I , of:

an associative product ×~,

an involution ∗~,

and a C∗-norm ‖ ‖~ (for ×~ and ∗~) on A′,
which coincide for ~ = 0 to the original product, involution and C∗-norm on A′,
such that the corresponding field of C∗-algebras, with continuity structure given by the elements
of A′ as constant fields, is a continuous field of C∗-algebras,

and such that for all a, b ∈ A′, ‖ (a×~b−ab)
i~ − {a, b}‖~ → 0 as ~→ 0.

A problem is that very few examples are known.

Simone Gutt DQ and Symmetries 11 / 1



Definition of strict deformation quantization

In the framework of C∗-algebras, Rieffel introduced the notion of strict deformation
quantization: A strict deformation quantization of a dense ∗-subalgebra A′ of a C∗-algebra, in
the direction of a Poisson bracket {., .} defined on A′, is an open interval I ⊂ R containing 0,
the assignment, for each ~ ∈ I , of:

an associative product ×~,

an involution ∗~,

and a C∗-norm ‖ ‖~ (for ×~ and ∗~) on A′,
which coincide for ~ = 0 to the original product, involution and C∗-norm on A′,
such that the corresponding field of C∗-algebras, with continuity structure given by the elements
of A′ as constant fields, is a continuous field of C∗-algebras,

and such that for all a, b ∈ A′, ‖ (a×~b−ab)
i~ − {a, b}‖~ → 0 as ~→ 0.

A problem is that very few examples are known.

Simone Gutt DQ and Symmetries 11 / 1



Definition of strict deformation quantization

In the framework of C∗-algebras, Rieffel introduced the notion of strict deformation
quantization: A strict deformation quantization of a dense ∗-subalgebra A′ of a C∗-algebra, in
the direction of a Poisson bracket {., .} defined on A′, is an open interval I ⊂ R containing 0,
the assignment, for each ~ ∈ I , of:

an associative product ×~,

an involution ∗~,

and a C∗-norm ‖ ‖~ (for ×~ and ∗~) on A′,
which coincide for ~ = 0 to the original product, involution and C∗-norm on A′,
such that the corresponding field of C∗-algebras, with continuity structure given by the elements
of A′ as constant fields, is a continuous field of C∗-algebras,

and such that for all a, b ∈ A′, ‖ (a×~b−ab)
i~ − {a, b}‖~ → 0 as ~→ 0.

A problem is that very few examples are known.

Simone Gutt DQ and Symmetries 11 / 1



Construction of a strict deformation quantization

Group actions appear here in an essential way : Rieffel introduced a general way to construct
such C∗-algebraic deformations based on a strongly continuous isometrical action of Rd on a
C∗-algebra A

α : Rd × A→ A : (x , a) 7→ αxa.

The product formula for the smooth vectors A∞ with respect to this action is defined, using an
oscillatory integral, choosing a fixed element θ in the orthogonal Lie algebra so(d), by

a×~ b := a ∗αθ b := (
1

π~
)d
∫
Rd×Rd

αx (a)αy (b) exp
2i
~ x·θy dxdy

and it gives a pre C∗ associative algebra structure on A∞.

This generalizes the Weyl quantization of R2n. Indeed

(F ∗~ G)(u) := (
1

π~
)2n
∫
R2n

∫
R2n

e
2i
~ Ω(v,w)F (u + v)G(u + w)dvdw

can be rewritten as

F ∗~ G = (
1

π~
)2n
∫
R2n×R2n

τv (F )τw (G)e
2i
~ Ω(v,w)dvdw

where τ denotes the action of R2n on functions on R2n by translation.
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Strict deformation quantization

Bieliavsky and Gayral have generalized the construction to actions of Lie groups that admit
negatively curved left-invariant Kähler structure.

An important observation due to Weinstein is the relevance in the phase appearing in the
product kernel

(F ∗~ G)(u) := (
1

π~
)2n
∫
R2n

∫
R2n

e
2i
~ (Ω(u,v)+Ω(v,w)+Ω(w,u))F (v)G(w)dvdw

of the symplectic flux S(x , y , z) = Ω(x , y) + Ω(y , z) + Ω(z, x) through a geodesic triangle that
admits the points x , y and z as mid-points of its geodesic edges.

This lead to the study of symplectic groups which have a structure of symmetric symplectic
spaces. Bieliavsky and his collaborators have built,with increasing generality, analogues of
Weyl’s quantization : they gave universal deformation formulas for those groups and obtained
new examples of strict deformation quantization.

A difficulty arising considering convergent star products given by integral formulas (like the

Moyal convergent star product defined on the space of Schwartz functions on R2n) is to extend

the construction to infinite dimensional cases, and such an extension is necessary to have a

deformation quantization approach for quantum field theory.
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Convergent deformation quantization

Another approach to the convergence problem is the following. Taking the formal power series
defining a formal star product, one can ask for convergence in a mathematically meaningful way.

This has been achieved by Waldmann et al. in a growing number of examples, for instance the
Wick star product on Cn and even in infinite dimension, the star product obtained by reduction
on the disk, the so-called Gutt star product on the dual of a Lie algebra, a Wick type star
product on the sphere.

They take a class of functions on which the star product obviously converges, build seminorms
which garantee the continuity of the deformed multiplication, and extend the product by
continuity to the completion of the class .

In this way, they construct topological non-commutative algebras, over C and not just over
C [[ν]], essentially of Fréchet type. They study Hilbert space representations of these algebras by
a priori unbounded operators .

Convergence of Moyal star product on a Fréchet algebra had also been studied by Omori et al.
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Thank you for your attention!
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